1,536 research outputs found

    Modelling eco-physiological response of table olive trees (Olea europaea L.) to soil water deficit conditions

    Get PDF
    The knowledge of crop response to water stress is crucial to predict transpiration reductions under limited soil water conditions and for a rational scheduling of irrigation. In order to assess whatever water stress model, it is necessary to estimate critical thresholds of soil water status, below which plant transpiration starts to decrease. The main objective of the work is to identify the shape and to determine the parameters of table olive orchards (Olea europaea, var. Nocellara del Belice) water stress function, assessed according to relative transpiration or leaf/stem water potential. In order to assess different water stress functions describing the eco-physiological field response to soil water status, an experimental campaign was carried out in a farm located in South-West coast of Sicily. Meteorological data and soil and crop water status were monitored during irrigation seasons 2008 and 2009. A value of soil matric potential of about −40 m was identified as the threshold below which actual transpiration decreases with decreasing soil water content. For values of soil matric potential higher than the critical threshold, actual transpiration resulted almost constant. A similar behavior was observed when the xylematic leaf/stem water potentials were used to quantify the crop water stress. Investigation also showed that the non-linear models better reproduced the initial phase of the transpiration reduction process; for the examined crop, in fact, convex shape models, typical of xerophytes, better reproduce the reductions of actual transpiration under the soil water deficit conditions recognized in the field

    Indirect estimation of calibration equation parameters for Sentek Diviner 2000 capacitance probe by means of soil physical properties

    Get PDF
    Measurements of soil water content (SWC) are often used for irrigation scheduling. Accurate monitoring of SWC is necessary, for example, to identify the exact irrigation timing and the amount of water volume to supply according to the crop requirement. The use of capacitance probes, measuring the apparent soil dielectric permittivity, indirectly related to soil water status, have been increasing during the last decade, as proved by the numerous researches carried out to determine, for different soil types, site-specific calibration relationships between SWC and the scaled frequency (SF) measured by the sensor. However, for swelling/shrinking clay soils, there is a lack of knowledge on how the changes of soil bulk density associated to variations of soil water content influence the apparent dielectric permittivity and therefore the sensor calibration relationship, as a consequence of the different contribute that soil, water and air, have on the measure provided by the sensor. The main objectives of the work are i) to determine the site specific calibration equations for a Sentek Diviner 2000 capacitance probe for soils characterized by different texture, ii) to investigate on the effects of soil bulk density and its variability with soil water content, on the calibration equation and iii) to proceed to the indirect estimation of calibration parameters by means of easily-measurable soil physical properties. Experiments were carried out on nine different soils collected from Sicilian irrigated area, characterized by a clay percentage ranging between 9% and 45%. Undisturbed soil samples (25 cm diameter and 25 cm height), allowed to determine, for each soil, the corresponding site-specific calibration equation. On the other hands, samples having the same dimensions, but filled with sieved soil and compacted at two different bulk densities ( b), were used to investigate on the effects of soil texture and bulk density on the measured SF. On each undisturbed or sieved sample and for all the investigated soils, the shrinkage characteristic curve, b(U) and the U(SF) relationship were contextually determined. The experiments on sieved soil samples, allowed to verify that the scaled frequency measured by the sensor also depends on b. According to this result, the generally used calibration equation was modified and a new empirical model U(SF, b), introducing the relationship b(U) as a factor, was proposed. Of course, for swelling/shrinkage clay soil the suggested calibration equation results implicit, if considering that b is also a function of U. The experiments also allowed to verify that parameters of the calibration equation depend on soil clay percentage and then to identify empirical relationships for their estimation, that were finally validated by using measurements acquired on undisturbed soil samples and some data collected by the literature

    Improvement of FAO-56 Model to Estimate Transpiration Fluxes of Drought Tolerant Crops under Soil Water Deficit: Application for Olive Groves

    Get PDF
    Agro-hydrological models are considered an economic and simple tool for quantifying crop water requirements. In the last two decades, agro-hydrological physically based models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere system. Although very reliable, because of the high number of required variables, simplified models have been proposed to quantify crop water consumes. The main aim of this paper is to propose an amendment of the Food and Agricultural Organization (FAO) of the United Nations FAO-56 spreadsheet program to introduce a more realistic shape of the stress function, valid for mature olive orchards (Olea europaea L.). The modified model is successively validated by means of the comparison between measured and simulated soil water contents and actual transpiration fluxes. These outputs are finally compared with those obtained with the original version of the model. Experiments also allowed assessing the ability of simulated crop water stress coefficients to explain the actual water stress conditions evaluated on the basis of measured relative transpirations and midday stem water potentials. The results show that the modified model significantly improves the estimation of actual crop transpiration fluxes and soil water contents under soil water deficit conditions, according to the RMSEs associated with the revised model, resulting in significantly higher than the corresponding values obtained with the original version

    Water status and yield response to deficit irrigation and fertilization of three olive oil cultivars under the semi-arid conditions of Tunisia

    Get PDF
    Sustainability of olive production is possible by adopting the modern techniques of irrigation and fertilization. In Tunisia, olive trees are usually cultivated in poor soils, under semi-arid conditions characterized by water scarcity. This study investigated the effects of different water supply and fertilization on leaf water status and crop yield of three different olive oil varieties cultivated in central Tunisia, during four experimental seasons (2014-2017). Three treatments were examined: trees conducted under rainfed conditions (TRF), which represented the control treatment, trees irrigated with 50% ETc (T50) and, finally, trees irrigated with 50% ETc and with additional fertilization (T50F). Leaf water content and potential, yield and water use efficiency have been monitored on three different varieties, Chetoui, Chemlali, and Koroneiki, which are quite typical in the considered region. For all the growing seasons, midday leaf water potentials were measured from April to September. Midday leaf water potentials (MLWP) were generally higher for the two irrigated treatments (T50 and T50F) than for non-irrigated trees (TRF). As the season proceeded, MLWPs tended to decrease during summer for all the treatments and varieties. The lowest values were observed for the non-irrigated trees, varying between -3.25 MPa to -4.75 MPa. Relative leaf water content followed the same trends of midday leaf water potentials. Chetoui showed the lowest yield, which did not exceed 1530 Kg/(ha year), even for irrigated and fertilized trees. On the other hand, the yields of Chemlali and Koroneiki, cumulated in the four years, reached the maximum value of about 20 tons/ha. For these two varieties, the cumulated yield obtained in the control treatment (TRF) resulted significantly lower than the corresponding of the other two treatments (T50 and T50F). The highest irrigation water use efficiency (WUE) was estimated for Chemlali (T50) and (TRF). WUE was equal to 1.22 Kg/m3 for Koroneiki under fertigated treatment (T50F). Application of the only water supply (50% ETc) or associated with fertilizer improved the tree water status and increased the productivity of Chemlali and Koroneiki varieties

    Detecting crop water status in mature olive groves using vegetation spectral measurements

    Get PDF
    Full spectral measurements (350-2500nm) at tree canopy and leaf levels and the corresponding leaf water potentials (LWP) were acquired in an olive grove of Sicily, at different hours of the day, during summer season 2011. The main objective of the work was to assess, on the basis of the experimental data-set, two different approaches to detect crop water status in terms of LWP. Specifically, using existing families of Vegetation Indices (VIs) and applying Partial Least Squares Regression (PLSR) were optimised and tested. The results indicated that a satisfactory estimation of LWP at tree canopy and leaf levels can be obtained using vegetation indices based on the near infrared-shortwave infrared (NIR-SWIR) domain requiring, however, a specific optimisation of the corresponding "centre-bands". At tree canopy level, a good prediction of LWP was obtained by using optimised indices working in the visible domain, like the Normalized Difference Greenness Vegetation Index (NDGI, RMSE=0.37 and R2=0.57), the Green Index (GI, RMSE=0.53 and R2=0.39) and the Moisture Spectral Index (MSI, RMSE=0.41 and R2=0.48). On the other hand, a satisfactory estimation of LWP at leaf level was obtained using indices combining SWIR and NIR wavelengths. The best prediction was specifically found by optimising the MSI (RMSE of 0.72 and R2=0.45) and the Normalized Difference Water Index (NDWI, RMSE=0.75 and R2=0.45). Even using the PLSR technique, a remarkable prediction of LWP at both tree canopy and leaf levels was obtained. However, this technique requires the availability of full spectra with high resolution, which can only be obtained with handheld spectroradiometers or hyper-spectral remote sensors

    Comparison of SWAP and FAO Agro-Hydrological Models to Schedule Irrigation of Wine Grape

    Get PDF
    This paper compares two agro-hydrological models that are used to schedule irrigation of a typical Mediterranean crop. In particular, a comparison between the Food and Agriculture Organization (FAO) model, which uses a black box approach, and the soil-water-atmosphere-plant (SWAP) model, which is based on the numerical analysis of Richards' equation, are shown for wine grape. The comparison was carried out for the 2005 and 2006 irrigation seasons and focused on hydrological balance components and on soil water contents. Next, the ordinary scheduling parameters were identified so that the performance of the two models, which aimed to evaluate the seasonal water requirements and the irrigation times, could be assessed. In the validation phase, both of the models satisfactorily simulated the soil water content, and comparable values of cumulative evapotranspiration were obtained. With the goal of recognizing the crop water stress condition in the field, the original algorithm of the FAO model was modified. This research provided evidence of how the two agrohydrological models, although characterized by different approaches in modeling the phenomena, showed a similar behaviour when used for scheduling irrigation under soil water deficit conditions. © 2012 American Society of Civil Engineers

    Development of Pelagic Larvae and Postlarva of Squilla empusa (Crustacea, Stomatopoda), with an Assessment of Larval Characters within the Squillidae

    Get PDF
    Larvae of the predatory crustacean Squilla empusa were collected from the plankton in Chesapeake Bay and reared in the laboratory to permit description of the pelagic stages before the postlarval stage. Characters such as rostral length and spinulation, carapace spinulation, relative size of telson, overall body size, and appearance probably are of more value for specific than for generic identification. The presence or absence of teeth on the dactylus of the second maxilliped, the presence or absence of a spine on the basis of the second maxilliped, and the number of epipods may be useful characters in determining generic alliances of larvae belonging to the Squillidae, but present data are not adequate for construction of generic keys to stomatopod larva

    Influence of Brand Personality-Marker Attributes on Purchasing Intention: The Role of Emotionality

    Get PDF
    Marketing researchers employ the Five-Factor Model to describe branded products through attributes used for human personality. Marker attributes used to elicit brand personality dimensions can also influence consumers’ intention to purchase. Two connected studies, carried out on two samples of 91 and 557 subjects, respectively, show that brand personality-marker attributes predict intention to purchase, but only to the extent that such attributes are vivid and, in particular, when they elicit emotional responses (i.e., when they are emotionally interesting). These findings have several implications for people involved in developing strategies for persuasive communication

    Soil structure and bypass flwo processes in a Vertsol under sprinkler and drip irrigation.

    Get PDF
    In this paper morphological and physical characteristics, as well as flow behaviour of a Mediterranean Vertisol under the influence of two different irrigation systems currently used for irrigation, i.e. drip and sprinkler systems, were compared. No differences in soil texture, compaction and in potential cracking were found on cores from the two fields. However, field application of methylene blue showed the presence of continuous macropores, penetrating up to depths of 20-25 cm from the soil surface, in the field where the drip system was in use (field 1). This was considered to be the pre-existing soil structure. Instead, macropores terminating at a depth ranging between 5 and 10 cm from the soil surface were observed in the sprinkler irrigated field (field 2). The same difference in terms of macropores' continuity was also observed on soil cores sampled from the two irrigated fields. The higher raindrop impact and the non-point water application involved in the sprinkler irrigation system were assumed to have determined, during several years, the different depth of penetration of the macropores in the two fields. A different hydraulic behaviour was evidenced by laboratory measurement of bypass flow on soil cores taken from the two fields. Specifically, higher values of the saturated hydraulic conductivity were found in the cores from the drip irrigated field compared to those sampled in the sprinkler field. In addition no bypass flow was measured in the columns under the sprinkler field, while high rates and amounts of bypass flow were obtained in the cores taken from the drip irrigated field. The different hydraulic behaviour observed in the cores taken from the drip and from the sprinkler irrigated field was in agreement with the difference in terms of macropores' continuity between the two fields. Being bypass flow a mechanism inducing leaching of solutes, results of this investigation suggest that irrigation systems affecting soil structure, and altering macropores' continuity, should be avoided in clay soils. (c) 2006 Published by Elsevier B.

    MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells

    Get PDF
    A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protei
    corecore